Envelope Models for Parsimonious and Efficient Multivariate Linear Regression

نویسندگان

  • R. Dennis Cook
  • Bing Li
  • Francesca Chiaromonte
  • FRANCESCA CHIAROMONTE
چکیده

We propose a new parsimonious version of the classical multivariate normal linear model, yielding a maximum likelihood estimator (MLE) that is asymptotically less variable than the MLE based on the usual model. Our approach is based on the construction of a link between the mean function and the covariance matrix, using the minimal reducing subspace of the latter that accommodates the former. This leads to a multivariate regression model that we call the envelope model, where the number of parameters is maximally reduced. The MLE from the envelope model can be substantially less variable than the usual MLE, especially when the mean function varies in directions that are orthogonal to the directions of maximum variation for the covariance matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groupwise envelope models for imaging genetic analysis.

Motivated by searching for associations between genetic variants and brain imaging phenotypes, the aim of this article is to develop a groupwise envelope model for multivariate linear regression in order to establish the association between both multivariate responses and covariates. The groupwise envelope model allows for both distinct regression coefficients and distinct error structures for ...

متن کامل

Normal Linear Regression Models with Recursive Graphical Markov Structure*

A multivariate normal statistical model defined by the Markov properties determined by an acyclic digraph admits a recursive factorization of its likelihood function (LF) into the product of conditional LFs, each factor having the form of a classical multivariate linear regression model (≡ MANOVA model). Here these models are extended in a natural way to normal linear regression models whose LF...

متن کامل

Efficient Inference of Parsimonious Phenomenological Models of Cellular Dynamics Using S-Systems and Alternating Regression

The nonlinearity of dynamics in systems biology makes it hard to infer them from experimental data. Simple linear models are computationally efficient, but cannot incorporate these important nonlinearities. An adaptive method based on the S-system formalism, which is a sensible representation of nonlinear mass-action kinetics typically found in cellular dynamics, maintains the efficiency of lin...

متن کامل

Application of non-linear regression and soft computing techniques for modeling process of pollutant adsorption from industrial wastewaters

The process of pollutant adsorption from industrial wastewaters is a multivariate problem. This process is affected by many factors including the contact time (T), pH, adsorbent weight (m), and solution concentration (ppm). The main target of this work is to model and evaluate the process of pollutant adsorption from industrial wastewaters using the non-linear multivariate regression and intell...

متن کامل

Relevance vector machine and multivariate adaptive regression spline for modelling ultimate capacity of pile foundation

This study examines the capability of the Relevance Vector Machine (RVM) and Multivariate Adaptive Regression Spline (MARS) for prediction of ultimate capacity of driven piles and drilled shafts. RVM is a sparse method for training generalized linear models, while MARS technique is basically an adaptive piece-wise regression approach. In this paper, pile capacity prediction models are developed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009